Progress in Nuclear Science and Technology Volume 5 (2018) pp. 116-118

ARTICLE

Systematic study of the UNiX₂ ternary compounds (X=C, Si, Ge)

Kohei Ohashi^{a*}, Masaki Sawabu^a, Kae Maeta^a, Masashi Ohashi^a and Tomoo Yamamura^b

^aGraduate School of Natural Science and Technology, Kanazawa University, Kakuma-cho, Kanazawa-shi, Ishikawa-ken, 920-1192, Japan; ^bInstitute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi-ken, 980-8577, Japan

We attempted to grow UNiX₂ ternary compounds by the arc melting method. UNiC₂ and UNiGe₂ may not melt congruently because both compounds contain impurity phases. UNiC₂ crystallizes into the tetragonal UCoC₂-type structure with space group *P4/nmm*, the annealed sample consists of UNiC₂ and U₂NiC₃ as the main and secondary phases, respectively. The lattice constants were obtained to be a = 3.512 Å, c = 7.339 Å. UNiGe₂ also contains two phases. We assumed that primary phase is isostructural to UNiSi₂ that crystallizes into the orthorhombic CeNiSi₂-type structure with the space group of *Cmcm*. On the other hand, it is reasonable to assume that UNi₂Ge₂ exists in the compound as secondary phase. The unit cell volume tends to increase as increasing the anomic number of X (C, Si, Ge). It comes from the fact that the atomic radius of X becomes larger as the atomic number becomes larger.

Keywords: uranium; nickel; ternary compounds; arc-melting method; X-ray powder diffraction

1. Introduction

Intermetallic compounds including Ce or U atoms have been investigated extensively because these compounds give important information for studying the role of strong electron correlations in metallic systems [1-4]. In these compounds, the ferromagnetic/ antiferromagnetic interaction and Kondo effect compete with each other.

The ternary compounds $CeTX_2$ (T = transition metal and X = Si, Ge, Sn) form a large family having the orthorhombic CeNiSi₂-type layered structure with space group *Cmcm*, and are constructed from deformed fragments of the CeGa₂Al₂ and α -ThSi₂ structures [5]. The lattice parameter along *b*-axis is extremely large compared to those along *a*- and *c*- axes, and the highly anisotropic magnetic property is expected. Indeed, these compounds have drawn considerable interest of a great variety of magnetic behaviors [6-8].

UNiSi₂ also crystallizes in orthorhombic CeNiSi₂type layered structure, and is a ferromagnet at $T_{\rm C}$ = 95 K [9, 10]. Single crystals can be grown by Czochralski pulling method because UNiSi₂ melts congruently. The large anisotropic behavior is observed in the measurement of the magnetization of UNiSi₂ single crystal in the low-temperature ferromagnetic phase. The easy magnetization direction is in the *ac* plane. From the result of the magnetic susceptibility along the *ac* plane, the effective magnetic moment is obtained to be $\mu_{\rm eff} \sim 2.47\mu_{\rm B}$ which is smaller than the value expected for the free U⁴⁺ or U³⁺ ions. It may come from highly anisotropic magnetic property of UNiSi₂ [11].

Figure 1. Crystal structure of UNiC₂ and UNiSi₂.

On the other hand, there are few reports about UNiX₂ compounds except for UNiSi₂. Gerss *et al.*, determined that UNiC₂ crystallizes into the tetragonal UCoC₂-type structure with space group *P4/nmm* [12]. So, there may be much interest in the magnetic and electronic properties of UNiC₂ which is one of uranium compounds without a center of inversion. However, the physical properties of UNiC₂ such as magnetic susceptibility and heat capacity have not been reported yet. Recently Molčanová *et al.* synthesized UNiGe₂ by splat cooling, but the crystal structure has been unknown yet [13]. As for UNiSn₂, there have not been reported at all. In the present work, we report on the synthesis of a ternary uranium compound UNiX₂.

^{*}Corresponding author. Email: k-ohashi@stu.kanazawa-u.ac.jp

2. Experimental details

Polycrystalline samples of UNiX₂ (X=C, Ge) were synthesized by arc melting with a stoichiometric composition in an Ar gas atmosphere. To improve homogeneity, the samples were turned over and re-melted several times. The samples were subsequently sealed in an evacuated quartz tube and annealed. The samples of UNiC₂ and UNiGe₂ were annealed at 1100 °C for 7 days and 840 °C for 7 days, respectively. The samples were characterized by X-ray powder diffraction experiments using a Rigaku MiniFlex II diffractometer with Cu-K α radiation. The simulation of the powder diffraction pattern and the visualization of the crystal structure were carried out by the VESTA 3 program [14].

3. Results and discussion

3.1. UNiC₂

Figure 2 shows the X-ray diffraction pattern of UNiC₂ for as-grown sample and annealed one. Almost all Bragg peaks became sharp after annealing. We indexed the Bragg peaks as the tetragonal type structure. The lattice constants were obtained to be a = 3.512 Å, c = 7.339 Å. These results are consistent with those of the previous report [12]. The result of the simulation also support that the main phase is the tetragonal UCoC₂-type structure with space group *P4/nmm*. On the other hand, small unknown peaks appear in the annealed sample and can be indexed as the X-ray diffraction pattern of U₂NiC₃ [15]. In preliminary measurement of dc magnetic susceptibility of annealed sample, two magnetic phase transitions are observed at 57 K and 140 K for annealed sample.

Figure 2. X-ray powder diffraction pattern of UNiC₂. Symbols (∇) show unknown peaks. The ticks correspond to 2θ Bragg positions.

Taking account that U_2NiC_3 is an antiferromagnet at $T_N = 52$ K [16], the sample may consist of $UNiC_2$ dominant phase of the tetragonal structure and U_2NiC_3 secondary phase.

3.2. UNiGe₂

Figure 3 shows the X-ray diffraction pattern of UNiGe₂ for as-grown sample, and annealed one. Bragg peaks became sharp after annealing. Here we assumed that UNiGe₂ has the same crystal structure as UNiSi₂ and indexed the Bragg peaks as the orthorhombic CeNiSi₂-type structure with the space group of *Cmcm*. Because of the preferred orientation of powdered samples, the relative relations of peak-intensities between several Bragg peaks in the diffraction pattern are different from those in the simulation. But, as shown in Figure 3, almost all peaks correspond to 2θ Bragg positions calculated by the simulation. The lattice constants were obtained to be a = 3.993 Å, b = 16.26 Å, c = 4.094 Å. However, some peak expected to appear from the simulation are missing in the diffraction pattern. It may come from the fact that several Bragg peaks of the experimental result are hidden in the background.

On the other hand, Molčanová *et al.* also synthesized $UNiGe_2$ by splat cooling. They found a new phase with some tetragonal structure [13]. It is unknown whether the new phase is same as the one we found because no experimental data has been described in their report.

Several unknown peaks are also observed in the X-ray diffraction pattern, and may correspond to the diffraction of UNi₂Ge₂ as a secondary phase [17]. Similar behavior is also described in the recent report of Molčanová et al. [13]. Recently we report on the magnetic characterization of UNiGe₂ and the magnetic susceptibility shows the large peak at 45 K and the small one at 65 K [18]. We associate the first transition with dominant magnetic phase of UNiGe₂ while the second one may correspond to T_N of UNi₂Ge₂[17].

Figure 3. X-ray powder diffraction pattern of UNiGe₂. Symbols (\checkmark) and (\bigtriangledown) show UNiGe₂ peaks and unknown peaks. The ticks correspond to 2θ Bragg positions.

4. Summary

Finally, we summarize the lattice parameters for the UNiX₂ compounds in **Table 1**. The unit cell volume tends to increase as increasing the anomic number of X (C, Si, Ge). It comes from the fact that the atomic radius

of X becomes larger as the atomic number becomes larger. Although we tried to synthesize $UNiSn_2$ by arc melting, our result of the powder X-ray diffraction indicated the presence of UNi_2Si_2 phase and $U_3Ni_3Sn_4$ one [19, 20].

UNiC₂ and UNiGe₂ may not melt congruently because both compounds contain two phases. Although we assumed that UNiGe₂ crystallizes into the orthorhombic structure in our preliminary study, it is needed to grow single crystal to verify our assumption. Further experiments are in progress to improve quality of samples and to investigate magnetic property.

Table 1. The lattice parameters for the UNiX₂ compounds.

	UNiC ₂	UNiSi ₂ [11]	UNiGe ₂
a (Å)	3.512(1)	4.010	3.993(8)
b (Å)		16.10	16.26(6)
<i>c</i> (Å)	7.339(4)	4.009	4.094(3)
$V(\text{\AA }^3)$	90.5(1)	258.8	266(1)

Acknowledgements

This work was performed under the inter-university cooperative research program of the cooperative research program of the Institute for Materials Research, Tohoku University (Proposal No. 17K0057). This work was supported in part by Futaba Electronics Memorial Foundation.

References

- [1] Y. Uwatoko, I. Umehara, M. Ohashi, T. Nakano and G. Oomi, Chapter 252 - Thermal and Electronic Properties of Rare Earth Compounds at High Pressure, *Handbook on the Physics and Chemistry* of Rare Earths, 42 (2012), pp.1-164.
- [2] M. Ohashi, G. Oomi, S. Koiwai, M. Hedo and Y. Uwatoko, Fermi-liquid instability of CeRh₂Si₂ near a pressure-induced quantum phase transition, *Phys. Rev.* B 68 (2003), 144428-1-7.
- [3] H. Miyagawa, G. Oomi, M. Ohashi, I. Satoh, T. Komatsubara, M. Hedo and Y. Uwatoko, Electronic states of single crystal CeAl₂ near the pressure-induced quantum critical point, *Phys. Rev.* B 78 (2008), 064403-1-8.
- [4] M. Ohashi, H. Miyagawa, T. Nakano, G. Oomi, V. Sechovsky, I. Satoh and T. Komatsubara, Thermal and Magnetic Properties in Ce_{1-x}Er_xAl₂ Intermetallic Compounds, J. Phys. Soc. Jpn. 83 (2014), 024701-1-5.
- [5] A. Iandelli and A. Palenzona, Chapter 13 Crystal chemistry of intermetallic compounds, 1979 Handbook on the Physics and Chemistry of Rare Earths, 2 (1979), pp.1-54.
- [6] M. Ohashi, G. Oomi, K. Ishida, I. Satoh, T. Komatsubara, T. Kawae and K. Takeda, Single-crystal growth of layered Ce–Ni–Ge ternary compounds, J. Alloys and Compounds, 84 (2006), pp.408-4012.
- [7] M. Ohashi, G. Oomi and I. Satoh, AC Magnetic Susceptibility Studies of Single Crystalline

CeNiGe₂ under High Pressure, *J. Phys. Soc. Jpn.*, 76 (2007), 114712-1-3.

- [8] T. Nakano, M. Ohashi, G. Oomi, K. Matsubayashi and Y. Uwatoko, Pressure-induced superconductivity in the orthorhombic Kondo compound CePtSi₂, *Phys. Rev. B* 79 (2009), 172507-1-4.
- [9] D. Kaczorowski, Magnetic behavior in UTSi₂ (T = Fe, Co and Ni) compounds, *Solid State Commun.* 99 (1996), pp.949-953
- [10] T. Taniguchi, H. Morimoto, Y. Miyako and S. Ramakrishnan, Low-temperature specific heat of UNiSi₂, J. Magn. Magn. Mater. 177-181 (1998), pp.55-56.
- [11] M. Ohashi, G. Oomi, K. Ishida and I. Satoh, Single crystal growth of RNiX₂ (R= U and Ce, X= Si and Ge) ternary compounds, J. Phys. Soc. Jpn. 75 (2006), pp.124-126.
- [12] M.H. Gerss and W. Jeitschko, The crystal structures of ternary actinoid iron (cobalt, nickel) carbides with composition 1:1:2, *Mat. Res. Bull.* 21 (1986), pp.209-216.
- [13] Z. Molčanová, M. Mihalik, M. Mihalik, Jr., M. Reiffers, A. Džubinská, M. Huráková, V. Kavečanský, M. Paukov and L. Havela, Characterization of New U–Ni–X₂ Splats and Study of their Physical Properties, *Acta Physica Polonica* A, 131 (2017), pp. 994-996.
- [14] K. Momma and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr. 44 (2011), pp.1272-1276.
- [15] M.H. Gerss and W. Jeitschko, The crystal structure of U₂NiC₃, *Zeitschrift für Kristallographie*. 175 (1986), pp.203-210.
- [16] T. Vomhof, R. Pöttgen and W. Jeitschko, Magnetic properties of the ternary uranium transition metal carbides UCrC₂, UCr₄C₄, UW₄C₄, U₅Re₃C₈ and U₂NiC₃, *Journal of Alloys and Compounds*. 196 (1993), pp.173-176.
- [17]L. Chełmicki, J. Leciejewicz and A. Zygmunt, Magnetic properties of UT₂Si₂ and UT₂Ge₂ (T = Co, Ni, Cu) intermetallic systems, *Journal of Physics* and Chemistry of Solids. 46 (1985), pp.529-538.
- [18] K. Ohashi, M. Ohashi, M. Sawabu, M. Miyagawa, K. Maeta and T. Yamamura, Magnetic properties of the UNiGe₂ at low temperature, accepted to *J. Phys. Conference Series*. (2017).
- [19] D. Kaczorowski, Z. Zolnierek, C. Geibel and F. Steglich, Magnetic and electrical properties of (U, Th)T₂Sn₂ (T \equiv Co, Ni, Cu) intermetallics, *Journal of Alloys and Compounds*. 200 (1993), pp.115-121.
- [20] M. Yethiraj, R.A. RobinsonJ, J. Rhyne, J.A. Gotaas and K.H.J. Buschow, Magnetic and crystallographic properties of UNiSn, *Journal of Magnetism and Magnetic Materials*. 79 (1989), pp.355-357.