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We investigate the magnetic phases of the Under-screened Anderson Lattice Model (UALM) for nearly 
half-filled 5f bands and find a competition between two distinct magnetic phases. The version of the UALM 
that we consider consists of two correlated 5f bands that, in the paramagnetic state, hybridize with a single 
conduction band. At the Néel temperature, the paramagnetic state undergoes a second-order transition to 
antiferromagnetically ordered states, in which the Néel order parameter induces a mixing between the states 
with different 5f characters. As pressure is applied, there is a line of first-order transitions that separates two 
Néel phases. Furthermore, as the pressure is increased, the Néel temperature decreases as if the system is 
being driven towards a quantum critical point. However, the nature of the paramagnetic instability changes 
from second-order to first-order before the Neel temperature reaches absolute zero. 
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1. Introduction1 

The Under-screened Anderson Lattice Model 
(UALM) has been used to describe the anomalous 
properties of several uranium compounds. The UALM is 
the natural generalization of the Under-screened Kondo 
Impurity Model (UKIM) for crystalline compounds. The 
UKIM describes localized moments S which interact 
with conduction electrons via an on-site 
antiferromagnetic interaction which, through the Kondo 
effect, induces a compensating antiparallel spin 
polarization of the conduction electrons that only 
partially quenches the moment on the impurity site [1]. 
This leads to a residual moment and hence, an entropy 
associated with the impurity at T=0. The uranium 
monochalcogenides exhibit resistivities that follow 
logarithmic temperature dependencies at high 
temperatures, which indicates that Kondo scattering is at 
work. The logarithmic temperature dependence of the 
resistivities is interrupted at temperatures of the order of 
100 K, where the materials order magnetically [2,3]. For 
the ferromagnetic uranium monochalcogenides, the 
saturated ordered magnetic moments are consistent with 
partial Kondo compensation of the free uranium 
moments inferred from the high-temperature 
Curie-Weiss form of the susceptibilities. While some 
cerium compounds do exhibit signatures of the Kondo 
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effect at high temperatures and undergo magnetic 
ordering at low-temperatures, the transition temperatures 
and the saturated ordered moments of the uranium 
compounds are orders of magnitude smaller than those 
of the corresponding cerium compounds [4]. Therefore, 
one may expect that the UALM may be appropriate to 
describe the uranium monochalcogenides [5,6]. 
Furthermore, one may expect that the UALM may also 
describe the antiferromagnetic ordering observed in the 
uranium-pnictides [7,8] and UIrSi3 [9]. It has been 
proposed that the UALM may describe the enigmatic 
“Hidden Ordered” phase of the itinerant 5f material 
URu2Si2 [10,11].  

In this paper, we survey the antiferromagnetically 
ordered phases of the UALM for nearly half-filled 5f 
bands, as found by mean-field theory. We incorporate a 
direct 5f to 5f hopping matrix element in the UALM that 
introduces a delocalization of the residual 5f local 
moments. We investigate the pressure-temperature phase 
diagram by assuming that the main effect of applying 
pressure is to reduce the inter-atomic spacings and, 
thereby, increase the band-width which reduces the 
tendency for magnetic ordering. 

 
 

2. The Under-screened Anderson lattice model 

The under-screened Anderson Lattice Model, used in 
the present work, is described by the Hamiltonian  
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The dispersion relation of the conduction electrons is 
given by: 

 
)]cos()cos()[cos(2)( zyx akakaktk       

 
where a is the lattice parameter, W=6t and 2W is the 
total band-width. The hybridization tem is: 
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The first term in the Hamiltonian describes two 5f bands 
(labeled by , while the other terms represent 
the screened Coulomb interaction, U, and the Hund’s 
rule interaction, J. The term Hd describes the conduction 
band in which )(k  is the nearest-neighbor tight 
binding hopping energy and the Hfd term represents the 
hybridization. We shall assume that V(k)=0, which does 
not affect the results. The first term Hf is treated in the 
mean-field approximation, in which the fluctuations 
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expectation value of 

qfn̂ is re-written in terms of the Néel 
order parameters via 
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where Q=() and ()=1for =, respectively. The 
quantity χ

fm is identified with the spin density wave (SDW) 
order parameter and satisfies a pair of coupled equations 
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which involves the energy gaps  
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The  susceptibility that appears in the above equations 
is given by 
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where f() is the Fermi-function and the contour 
encircles the real axis. The function F(k+Q) is related 
to the 5f Green’s function G(k+Q). The  
susceptibility is given by 
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in which  
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The Helmholtz Free-Energy FN can be expressed in 
terms of the Néel order parameters as 
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3. Numerical results 

 
Figure 1.  The upper panel (a) shows  as a function of the 
band-width W, for various temperatures. The lower panel (b) 
shows  for the same range of temperatures and band-widths. 
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The results presented in this section were calculated 
with the parameter values U=5,J=0.165, V and 
the value of the effective 5f level energy was taken to be 
Ef eVhe occupation number of the 5f bands was 
chosen as being close to 2. 

The gaps  and  as a function of the conduction 
band-width  (half-width) W, are shown in Figure 1 for 
different temperatures. Note that the increase of W acts 
in the sense of suppressing the Néel state. Besides that, 
at low temperatures, for instance kB T = 0,  exhibits a 
discontinuity at W  1.03. Indeed, near W = 1.03, the 
system of equations has several solutions.  The area 
highlighted by the green color shows the region where 
there are multiple solutions for  and . The point C 
indicates the smallest value of W and the highest 
temperature, for which  and  show discontinuous 
behavior. In the regions where the equations possess 
multiple solutions (shown in green), the Helmholtz 
Free-Energy has been used to determine which of the 
solutions for  and  are more stable. The behavior of 
the gap  is similar to that of , as can be seen in 
Figure 1(b).  

The discontinuity exhibited by  and  indicates 
that a first-order transition occurs between two 
competing SDW's, here called SDW1 and SDW2. The 
temperature at the point C is kB T  0.004 eV. For kB T  
0.004 eV, the gaps  and  vary continuously and go 
to zero at TN. However, another interesting result is 
found at very low temperatures and large values of the 
band-width W. For kB T > 0.001 eV, the phase transition 
between the SDW2 and the paramagnetic phase is a 
second-order type of phase transition.  However, at kB T 
= 0, both  and  exhibit a discontinuous behavior 
indicating another first-order phase transition between 
the SDW2 and the paramagnetic phase. The replacement 
of a second-order transition between the SDW2 and the 
paramagnetic phase at higher temperature by a 
first-order transition at lower temperatures suggests the 
presence of a tri-critical point.  This tri-critical point 
has been located at kB T  0.001 eV.    

The nature of the phase transition is illustrated by a 
complementary analysis of the behavior of  and  as 
a function of temperature T. Figure 2 shows the gaps as 
a function of T, for several values of the band-widths W. 
For W=0.90 eV and W=0.95 eV, both  and  
decreases with the temperature and fall continuously to 
zero at TN, which is a feature of a second-order phase 
transition. It should be noted that these values of W are 
smaller than the value of the band-width at the point C 
of figure 1. However, for W=1.00 eV, i.e., for W located 
in the region where multiple solutions exist (as shown in 
Figure 1), although the gaps go to zero continuously at 
TN, they exhibit a discontinuity at kB T  0.0028 eV. For 
W=1.025 eV, a similar behavior is observed, however, in 
this case, the discontinuity occurs at kB T  0.0007 eV. 
This behavior is a manifestation of a first-order 
transition between the two competing SDW1 and SDW2. 
This finding is in accord with the results presented in 

Figure 1. For W = 1.10 and 1.20 eV, the gaps vanish 
continuously, as is also the case for W= 0.90 eV and W= 
0.95 eV. For W = 1.650 eV the gaps decrease with the 
temperature and fall discontinuously to zero at TN. The 
inset of Figure 2(a) shows, in detail, the discontinuity of 
at kB T  0.0008 eV. A similar discontinuity of  
can be seen in Figure 2(b). 

 
 

Figure 2.  The upper panel (a) shows  as a function of 
temperature T, for various band-widths W. The lower panel (b) 
shows that  exhibits similar behavior. 
 
 
4. Conclusions 

We have investigated the magnetic phase diagram of 
the UALM where the 5f bands are almost half-filled as a 
function of the 5f band-widths. The UALM supports 
Néel phases in which the ordering in one 5f band 
induces ordering in the second 5f band. As the 5f 
band-width increases, we find that the two gaps ,  
and the induced sub-lattice magnetizations vary 
continuously but exhibit a distinct jump indicating a 
first-order transition between the two competing Néel 
phases. As the band-width increases, the tendency for 
magnetic order decreases, as is evidenced by a decrease 
in the Néel temperature, TN. Initially, the paramagnetic 
state becomes unstable to the Néel state via a 
second-order instability at TN. The decrease in TN with 
band-width suggests that the material will have a 
quantum critical point. However, before the system 
reaches the quantum critical point, the phase transition 
changes from second-order to first-order. The change of 
order of the transition is understood in terms of a slight 
mismatch between the position of the Fermi-energy and 
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the energy at which the nesting would be optimal. The 
change in the order occurs when the energy lowering 
produced by the reconstruction of the Fermi-surface 
exceeds the entropy term in the Helmholtz Free-Energy. 
Since the mean-field approximation is not expected to be 
applicable in the critical region, defined by the Ginzburg 
criterion, the effects of commensurate and 
incommensurate fluctuations requires further 
investigation. 
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